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The asymptotic behaviour of large-scale velocity statistics in an homogeneous
turbulent shear flow is investigated using direct numerical simulations (DNS) of
the incompressible Navier–Stokes equations on a 5123 grid, and with viscous rapid
distortion theory (RDT). We use a novel pseudo-spectral algorithm that allows us to
set the initial value of the shear parameter in the range 3–30 without the shortcomings
of previous numerical approaches. We find there is an explicit dependence of the early-
time behaviour on the initial value of the shear parameter. Moreover, the long-time
asymptotes of large-scale quantities such as the ratio of the turbulent kinetic energy
production rate over dissipation rate, the Reynolds stress anisotropic tensor and the
shear parameter itself depend sensitively on the initial value of the shear parameter
over the range of Reynolds number we could achieve (26 � Rλ � 63) with the
stringent resolution requirements that were satisfied. To gain further insight into the
matter, we analyse the full viscous RDT. While inviscid RDT has received a great deal
of attention, viscous RDT has not been fully analysed. Our motivation for considering
viscous RDT is so that the energy dissipation rate enters the problem, enabling the
shear parameter to be defined. We show asymptotic expansions for the short-time
behaviour and numerically evaluate the integrals to determine the long-time prediction
of viscous RDT. The results are in quantitative agreement with DNS for short times;
however, at long times viscous RDT predicts the turbulent energy decays to zero.
Through an analysis of the pressure–strain terms, we show that the nonlinear ‘slow’
terms are essential for rearranging turbulent energy from the streamwise direction
to the mean shear direction, and this sustains the indefinite growth of the kinetic
energy at long times. In effect, the nonlinear pressure–strain correlation maintains the
three-dimensionality of the turbulence, countering the tendency of the mean shear to
project the turbulence onto the two-dimensional plane of the mean-flow streamlines.
We postulate that the predictions of viscous RDT at long times could be improved by
introducing a model for the ‘slow’ pressure–strain term, along the lines of the Rotta
model.

1. Introduction
Homogeneous turbulent shear flow (HTSF) is among the canonical flows considered

to be the ‘building blocks’ of turbulence. It is the next step up in complexity from
isotropic turbulence. This flow has many of the features found in wall-bounded flows,
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e.g. off-diagonal Reynolds stress components, turbulence production and hairpin
vortices, without introducing the complexities of a fully inhomogenous turbulence.
Consequently, this flow has been widely investigated in experiments, direct numerical
simulations (DNS) and theoretically. Despite the attention it has received over the
past 40+ years, there remain fundamental questions about the long-time behaviour
of the flow that have yet to be satisfactorily resolved. In this study, we consider these
issues using DNS and by applying rapid distortion theory (RDT).

In the classical view of HTSF (Tavoularis 1985; see also § 5.4.5 in Pope 2000 for a
simple derivation), the turbulent kinetic energy at long times grows according to

q2(t) = q2
r exp(σSt), (1.1)

where q2 ≡ u′
iu

′
i is twice the turbulent kinetic energy, S is the uniform mean shear rate,

σ is a yet-undefined constant and the subscript ‘r ’ indicates a reference value. Much
of the literature supports σ > 0, although, as noted below, this is not universal. As
noted by Jacobitz, Sarkar & van Atta (1997) for stratified turbulence and Schumacher,
Sreenivasan & Yeung (2003) in their study of the small scales, two initial parameters
characterize HTSF: the Reynolds number (here we use the Reynolds number based
on the Taylor microscale, Rλ ≡ q2

√
5/(3εν), where ε is the dissipation rate and ν

is the kinematic viscosity of the fluid); and the non-dimensional ‘shear parameter’
defined as S∗ ≡ Sq2/ε. The latter is a measure of the strength of the shear relative
to the turbulence time scale—S∗ � 1 implies strong shear (note that S∗ ∼ 30 in
a boundary layer). Technically, asymptotically strong shear would imply the more
stringent condition: Sτη � 1, where τη ≡ (ν/ε)1/2 is the Kolmogorov time scale, or
equivalently S∗ � Rλ. This condition is rarely satisfied in DNS or experiments due
to different, but important intrinsic limitations to both approaches.

Experimental measurements of a nearly HTSF are often made in a wind tunnel
or water tunnel by passing turbulence through a screen with variable solidity that
produces a nearly uniform mean velocity gradient across the tunnel. The resulting
turbulence is not perfectly homogeneous, as the turbulence across any cross-section
of the tunnel will have evolved for a period of time that too varies across the tunnel
with the mean velocity. Hence there will be some turbulent transfer of kinetic energy
in the direction of the mean gradient. The assumption made in most experiments is
that this spatial diffusion of turbulent energy is small as compared to the source and
sink terms. This assumption can be justified by computing the turbulent flux. Indeed,
the turbulent flux is one or more orders of magnitude below the source and sink
terms (Harris, Graham & Corrsin 1977).

Whether the asymptotic state of HTSF is a function of the initial value of either
or both parameters remains controversial. Experiments have generally yielded σ > 0
(e.g. Harris et al. 1977; Tavoularis & Corrsin 1981; Rohr et al. 1988; Tavoularis &
Karnik 1989; DeSouza, Nguyen & Tavoularis 1995), although with values that vary
with the flow parameters (e.g. Garg & Warhaft 1998) and possibly the apparatus
(Rose 1966, 1970; Champagne, Harris & Corrsin 1970). Tavoularis (1985) attempted
to explain these discrepancies based on the initial value of the mean shear with some
success.

Rohr et al. (1988) measured turbulence intensities in a water tunnel designed to
allow them to vary the mean shear while keeping the centreline velocity of the tunnel
constant. They found that the turbulence intensities grew faster for the higher shear
rates at the same centreline speed. They also were able to vary the initial integral
length scale of the turbulence and found that this too influenced the growth rate of the
turbulence intensity (i.e. σ ). Notice that both of these results are an indirect indication
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of sensitivity to the shear parameter since it could have been defined in terms of the
integral length scale as follows: S∗ = SL11/q , where L11 is the integral length scale.
Similar results were obtained by Rose (1970), although subsequent concerns have
been raised about the relatively short test section (St � 3). So while trends indicate
some sensitivity to the shear parameter, it is clear that a comprehensive understanding
of how σ depends upon the two initial parameters has yet to be developed.

There are two important challenges to the experiments that, to some extent, have
limited their ability to address this question. First, the maximum value of St that can
be achieved is limited by the length of the wind tunnel to � 20 for most experiments.
It is difficult to tell if the asymptotic regime has been fully achieved. Some argue that
it depends on the number of large eddy turnover times that have transpired, which is
even more limited by the length of the tunnel. Second, while it is possible to explore
a broad range of Reynolds numbers using an active grid (Mydlarski & Warhaft
1996), it is difficult in the wind tunnel to vary the shear parameter over a wide range.
With the exception of DeSouza et al. (1995), the experiments are generally limited to
S∗ � 10, which while greater than unity, cannot be considered asymptotically large.

DNS of HTSF likewise have yielded mixed results. For example, Jacobitz et al.
(1997) and Jacobitz & Sarkar (1999) in DNS studies of uniformly sheared stratified
flows (at their lowest Richardson number) found that the asymptotic state of the
flow depended sensitively on both the Reynolds number and the shear parameter.
At low values of S∗

0 the turbulence grew (i.e. σ > 0), but at larger values of S∗
0 the

turbulence decayed for all the initial values of Reynolds number they investigated.
Shih et al. (2000) found a similar result, but argued that the sensitivity to S∗

0 vanishes
at large enough values of the Reynolds number (Rλ � 80). Lee, Kim & Moin (1990)
did not consider this question directly, but in figure 4 of their paper they showed the
asymptote for S∗ to be sensitive to its initial value, S∗

0 .
There have been numerical studies of flows closely related to HTSF as well. Yu &

Girimaji (2005) applied a lattice Boltzmann algorithm to turbulent Couette flow and
considered the early-time solution far from the boundaries to be similar to HTSF.
They observed exponential growth of the kinetic energy and found only a weak
sensitivity of the flow to S∗

0 and a much stronger sensitivity to the initial value of
Rλ. Schumacher (2004) studied turbulent flow confined between two free-slip planes
subject to a body force that varies linearly from the top plane to the bottom. The
resulting flow achieved a steady state at long times, implying σ = 0. Of course,
there is likely significant influence of the bounding planes on the long-time behaviour
of the turbulence, and hence this particular result may be an artifact of the flow
specification.

Figure 1 shows a compilation of the S∗–Rλ parameter space that has been explored
by DNS (solid symbols) and experiments (open symbols) in the literature, with the
newest runs from this study designated by ⊗. For DNS, the standard definitions
of S∗ and Rλ apply, whereas for the experiments, various surrogates have been
employed. For example, ε has been obtained as the imbalance of the turbulent
kinetic energy production and growth (Harris et al. 1977; Tavoularis & Corrsin 1981;
Tavoularis & Karnik 1989; DeSouza et al. 1995), or based on some combination
of velocity derivatives (Rohr et al. 1988; Garg & Warhaft 1998; Shen & Warhaft
2000). The Taylor microscale was often estimated using one component of velocity,
λ = u2/(∂u/∂x)2. An exception is DeSouza et al. (1995), who used the following
empirical estimate: λ2 = 12νq2/ε. In some cases (Garg & Warhaft 1998; Shen &
Warhaft 2000), the definition of S∗ reported in the paper differed from our definition.
To compare with the other experiments, we recalculated those quantities using the
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Figure 1. Initial values of the Reynolds number and the shear parameter for previous DNS
(solid symbols) and operational values for previous experiments (open symbols) of HTSF.
DNS: � Rogers, Moin & Reynolds (1986), � Lee et al. (1990), � Jacobitz et al. (1997), � Shih
et al. (2000), � Schumacher (2004) and � Yu & Girimaji (2005). Experiments: � Champagne
et al. (1970), � Tavoularis & Corrsin (1981), � Harris et al. (1977), 	 Tavoularis & Karnik
(1989), + DeSouza et al. (1995), 
 Garg & Warhaft (1998), ∗ Shen & Warhaft (2000),

 Ferchichi & Tavoularis (2000) and � Rohr et al. (1988). The new runs from this study are
designated by ⊗.

approximation q2 = u2 + 2v2. However, this correction could not be applied to the
data of Ferchichi & Tavoularis (2000), as they only reported one component of the
velocity; instead we assumed q2 = 2u2.

Despite these unavoidable inconsistencies in the parameter definitions, figure 1
shows reasonably well the regions of the parameter space that have been explored by
simulations and experiments. In particular, it is apparent that DNS has had difficulty
exploring both high Reynolds number and high shear parameter. Most DNS are
based on the algorithm by Rogallo (1981), which requires remeshing at odd integer
values of St (i.e. St = 1, 3, 5, etc.). Remeshing, combined with dealiasing leads to
a sudden loss in both the turbulent kinetic energy and turbulent energy dissipation
rate. For higher shear rates, this loss can be as large as 20 %–40 %. Lee et al. (1990)
reached S∗

0 ∼ 30 using the Rogallo code by turning off the remeshing step. They
argued that at high shear rates, the adverse effect of the frequent remeshing exceeds
the benefits, particularly in light of the relatively short physical time of the simulation.
In contrast, experiments are able to span a much broader range of Reynolds numbers,
but they too are limited to a modest range of the shear parameter.

The shortcomings of the Rogallo algorithm at high S∗
0 have been addressed by

a new algorithm (Brucker et al. 2007). Their approach too is based on a pseudo-
spectral algorithm for the Navier–Stokes equations; however, the field variables in
physical space are evaluated on an orthogonal mesh in the laboratory frame instead
of the deforming mesh used by the Rogallo algorithm. The resulting DNS has smaller
aliasing errors, and no jumps in the kinetic energy or dissipation rate, since the
remeshing step has been eliminated. In this investigation, we apply the new algorithm
to a series of 5123 DNS of shear flows with initial shear parameters over the range
3–30. Owing to the stringent resolution requirements enforced in this study (see § 3.3
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for details), the range of Reynolds numbers was relatively small (26 � Rλ � 63);
however, the results were found to depend only weakly on this parameter. We present
new findings for the asymptotic behaviour of the large-scale quantities, as well as
attempt to sort out the inconsistencies in the previous literature.

Additionally, to assist in the interpretation of the high shear results, we apply RDT
to HTSF. Scaling arguments suggest that for cases in which the shear parameter
is high, the nonlinear turbulence–turbulence interactions can be neglected from the
equation of motion. A review of the theory can be found in Savill (1987) and
Hunt & Carruthers (1990). RDT has been applied to inviscid HTSF by Moffat (1967),
Townsend (1970), and more recently by Rogers (1991), who developed analytical
expressions for the short- and long-time behaviour of the Reynolds stress components.
However, the Reynolds number and shear parameter are not defined in the inviscid
limit, and hence this RDT analysis cannot be used to investigate the significance of
these parameters on the long-time behaviour of the turbulence. RDT has also been
applied to viscous HTSF (Deissler 1961; Fox 1964; Thacker, Grosh & Gatski 1999);
however, their results do not consider the significance of the shear parameter on the
turbulence evolution.

In this study, we obtain analytical expressions for the short-time behaviour of
the turbulent Reynolds stresses, kinetic energy production over dissipation rate
and the shear parameter. The results explicitly show how the two parameters
influence the short-term behaviour. Second, we numerically evaluate the viscous RDT
integrals to obtain predictions for the asymptotic behaviour of HTSF at long times.
Comparing viscous RDT to DNS helps explain why nonlinear effects eventually
become important, and suggests possible modifications to the theory that could
account for these effects.

The paper is organized as follows. Section 2 discusses the governing equations for
HTSF, with the equations for the large-scale turbulence statistics provided in § 2.4.
Results from the DNS are presented in § 3 followed by the viscous RDT analysis in
§ 4. Conclusions are given in § 5.

2. Homogeneous turbulent shear flow
2.1. Governing equations

We are interested in the flow of an incompressible fluid in a periodic box of length
2π in each direction. The governing equations for the fluid are

∂ui

∂xi

= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂(p/ρ)

∂xi

+ ν
∂2ui

∂xj∂xj

, (2.2)

where ui is the velocity vector, ρ is the fluid density, ν is the kinematic viscosity and
p is the pressure.

Introducing the Reynolds decomposition, ui = Ui +u′
i and p = P +p′, where capital

letters represent mean quantities and prime letters are the fluctuating quantities. We
define Ui = (Sx2, 0, 0), where S is the spatially uniform mean shear rate imposed on
the flow. Invoking homogeneity and combining and simplifying the terms that involve



218 J. C. Isaza and L. R. Collins

the mean flow, the final form of the evolution equation for the fluctuating velocity is

∂u′
i

∂t
+ Sx2

∂u′
i

∂x1

+ Sδi1u
′
2︸ ︷︷ ︸

rapid

+ u′
j

∂u′
i

∂xj︸ ︷︷ ︸
slow

= − ∂(p′/ρ)

∂xi

+ ν
∂2u′

i

∂xj∂xj

. (2.3)

The terms that are proportional to the mean shear rate S are labelled ‘rapid’ and the
nonlinear terms are labelled ‘slow’. Taking the divergence of (2.3) while invoking the
continuity relationship shown in (2.1) yields the following Poisson equation for the
pressure

1

ρ

∂2p′

∂xi∂xi

= − 2S
∂u′

2

∂x1︸ ︷︷ ︸
rapid

− 2
∂u′

i

∂xj

∂u′
j

∂xi︸ ︷︷ ︸
slow

. (2.4)

2.2. Initial conditions

The initially isotropic velocity field was generated using a random phase algorithm
with a prescribed initial energy spectrum E0 (k0) given by

E0 (k0) = Cκε
2/3
0 κ

−5/3
0

⎧⎨
⎩

(k0/κ0)
2 k0 < κ0

(k0/κ0)
−5/3 κ0 � k0 � κη

0 k0 > κη

, (2.5)

where k0 is the initial wavenumber, Cκ ≈ 1.5 is the Kolmogorov constant, ε0 is
the initial energy dissipation rate, κ0 defines the location of the peak in the energy
spectrum and κη is the maximum energy-containing wavenumber, defined to be
consistent with ε0 as

κη

κ0

≡
[

2ε
1/3
0

3νCκκ
4/3
0

+
11

15

]3/4

. (2.6)

The spectrum includes an energy containing range proportional to k2
0 in order to

minimize the time required for the simulation to reach the self-similar state.
To check whether the results depend upon the Gaussian velocity field that results

from the random-phase initialization, we compared them to separate runs that first let
the turbulence decay without mean shear until the velocity derivative skewness, M3 ≡
(∂u/∂x)3/

[
(∂u/∂x)2

]3/2

, had reached the fully developed value of −0.4 (Tavoularis &

Corrsin 1981), so that the small scales were in a more natural state before applying
the uniform shear. The comparison is shown in figure 2. As you can see, the large
scales are not significantly affected by this change in the initial velocity field, and
hence the Gaussian initial velocity field was used throughout this study.

2.3. Parameters

HTSF is characterized by two initial parameters: the Reynolds number defined as
Rλ ≡ q2

√
5/(3νε) and the shear parameter defined as S∗ ≡ Sq2/ε. The first is a

measure of the ratio of the largest to the smallest turbulence length or time scales,
while the second is the ratio of the largest turbulence time scale to the mean shear
time scale, taken as 1/S. It is customary to define a non-dimensional time β ≡ St ,
which corresponds to the total strain due to the mean shear.
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Figure 2. Temporal evolution of (a) P/ε and (b) S∗ for Gaussian turbulence with S∗
0 = 3 +

and 27 �, and for an isotropic field in which the turbulence has decayed until the velocity

derivative skewness, M3 ≡ (∂u/∂x)3/
[
(∂u/∂x)2

]3/2

, has reached the fully developed value of

−0.4 with S∗
0 = 3 � and 27 �. The initial Reynolds number is (Rλ)0 = 26.

2.4. Reynolds averaged equations

The exact equations governing the four non-zero components of the average Reynolds
stress are (Pope 2000)

dR11

dt
= P11 + Π11 − ε11, (2.7a)

dR22

dt
= +Π22 − ε22, (2.7b)

dR33

dt
= +Π33 − ε33, (2.7c)

dR12

dt
= P12 + Π12 − ε12, (2.7d )

where

Rij ≡ u′
iu

′
j , (2.8)

Pij ≡ −Rik

∂uj

∂xk

− Rjk

∂ui

∂xk

, (2.9)

Πij ≡ p′

ρ

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
, (2.10)

εij ≡ 2ν
∂u′

i

∂xk

∂u′
j

∂xk

. (2.11)

The source terms for HTSF take the form: P11 = −2SR12 and P12 = −SR22. Taking
half of the trace of (2.7) yields the transport equation for the turbulent kinetic energy

dq2/2

dt
= P − ε, (2.12)
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Figure 3. Schematic of the shear periodic boundary conditions in two dimensions. Mean
shear of magnitude S lies in the vertical direction. Solid lines indicate orthogonal frame;
dashed lines indicate deforming frame in which boundary conditions are periodic. Black dots
are periodic points.

where P ≡ P11/2 and ε ≡ εii/2. To analyse the self-similar regime of HTSF, it is useful
to consider the anisotropic Reynolds stress tensor, bij ≡ Rij/q

2 − δij /3. We expect
this tensor to approach a constant in the self-similar regime. The exact governing
equations for the four non-zero components of the anisotropic tensor are as follows:

1

S

db11

dt
= 2 (b11 + 1/3)

(
b12 + 1/S∗) − 2b12 + Π̃11 − ε̃11, (2.13a)

1

S

db22

dt
= 2 (b22 + 1/3)

(
b12 + 1/S∗) + Π̃22 − ε̃22, (2.13b)

1

S

db33

dt
= 2 (b33 + 1/3)

(
b12 + 1/S∗) + Π̃33 − ε̃33, (2.13c)

1

S

db12

dt
= 2b12

(
b12 + 1/S∗) − (b22 + 1/3) + Π̃12 − ε̃12, (2.13d )

where Π̃ij ≡ Πij/Sq2 and ε̃ij ≡ εij /Sq2.

3. Direct numerical simulations
3.1. Numerical method

The DNS code integrates the continuity relationship (2.1) and the equation for the
fluctuating velocity (2.3). The boundary condition in the x2 direction is not periodic in
the laboratory frame of reference due to the presence of the uniform shear. Figure 3
shows a schematic of the boundary condition in two dimensions. The dashed lines
show the deforming frame of reference in which the flow is periodic. The solid lines
indicate the orthogonal laboratory frame of reference. Forward and reverse spectral
transforms for a generic variable ζ , expressed in terms of the orthogonal frame of
reference, are shown below (Brucker et al. 2007):

ζ (x, t) =
1

N3

∑
k

ζ̂ (k, t) exp [I (kixi − Stk1x2)] , (3.1)

ζ̂ (k, t) =
∑

x

ζ (x, t) exp [−I (kixi − Stk1x2)] , (3.2)
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where I ≡
√

−1. The cross term in the exponential Stk1x2 arises due to the shear-
periodic boundary condition. As a consequence of this term, it is not possible to
calculate the forward and reverse transforms using a standard three-dimensional fast
Fourier transform (FFT).

Rogallo (1981) resolved this issue by transforming (2.3) into a coordinate system
that deforms with the mean flow. In this moving frame of reference, the spectral
transform reduces to the conventional three-dimensional FFT, allowing the use of a
standard numerical algorithm. However, mean shear progressively distorts the mesh
in physical space, leading to a growth in aliasing errors from the pseudo-spectral
evaluation of the nonlinear terms on the deformed mesh. To relieve this problem,
Rogallo introduced a remeshing step. As mentioned earlier, remeshing with dealiasing
leads to a sudden loss in both the turbulent kinetic energy and turbulent energy
dissipation rate.

We developed an alternate algorithm that works directly with (3.1) and (3.2) in
the orthogonal (laboratory) frame of reference. The challenge was to accomplish the
three-dimensional transform, with the phase shift, in O(N3 lnN) operations, where
N is the number of grid points in each direction. This was done by decomposing
the three-dimensional transform into a sum of products of one- and two-dimensional
transforms. To illustrate this point, we show the procedure for evaluating a forward
transform.

The first step is to transform x1, x3 to k1, k3 by calling N two-dimensional
real → complex FFTs yielding for an arbitrary physical-space variable φ(x1, x2, x3) :

φ̌(k1, x2, k3) =
∑
x1

∑
x3

φ(x1, x2, x3) exp [−I (k1x1 + k3x3)] . (3.3)

We then phase shift the result to accommodate the uniform mean shear

φ̃(k1, x2, k3) ≡ φ̌(k1, x2, k3) exp [IStk1x2] . (3.4)

The transform is completed by calling N2 one-dimensional complex → complex FFTs
to obtain

φ̂(k1, k2, k3) =
∑
x2

φ̃(k1, x2, k3) exp [−Ik2x2] . (3.5)

The first calculation over planes will scale like O(N × N2 lnN) operations, the
multiplication step O(N3), and the final transform over pencils like O(N2 × N lnN),
yielding an overall scaling of O(N3 lnN) operations.

We can similarly outline the reverse transform. The first step is to perform N2

one-dimensional complex → complex pencil transformtions to obtain

φ̃(k1, x2, k3) =
1

N

∑
k2

φ̂(k1, k2, k3) exp[Ik2x2]. (3.6)

Next is the multiplication step:

φ̌(k1, x2, k3) ≡ φ̃(k1, x2, k3) exp[−IStk1x2], (3.7)

followed by N two-dimensional complex → real, plane FFTs, yielding the desired
transform

φ(x1, x2, x3) =
1

N2

∑
k1

∑
k3

φ̌(k1, x2, k3) exp [I (k1x1 + k3x3)] . (3.8)

Again, the overall calculation scales as O(N3 lnN) operations.
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Figure 4. Time evolution of the normalized turbulent kinetic energy q2/q2
0 and normalized

dissipation rate ε/ε0 for + S∗
0 = 3, � S∗

0 = 15, and � S∗
0 = 27. Initial Reynolds number

(Rλ)0 ∼ 26. The lines represent least squares fits to (3.9) and (3.10). The fitted values of σ are
reported in table 1.

The approach is to solve the equations derived by Rogallo (1981) in Fourier
space utilizing the above inverse transform to obtain the variables in physical space
for the purpose of evaluating nonlinear products pseudo-spectrally. The algorithm
has been implemented in a distributed computational environment using message
passing interface (MPI). The data is decomposed into two-dimensional slabs that
are distributed among the processors. Further details of the code and its validation
against the Rogallo algorithm and experiments are discussed extensively in Brucker
et al. (2007).

3.2. DNS results

DNS have been carried out at three values of the initial shear parameter S∗
0 = 3,

15 and 27 and two initial Reynolds numbers (Rλ)0 = 26 and 40. The results for the
normalized turbulent kinetic energy q2/q2

0 and dissipation rate ε/ε0 at the lower initial
Reynolds number are shown in figure 4. The lines represent least squares fits to the
expressions

q2 = q2
r exp [σS (t − t0)] . (3.9)

ε = εr exp [σS (t − t0)] , (3.10)

where q2
r , εr , σ and t0 are fitting parameters. In general, we observe exponential

growth for both variables, with exponents that depend sensitively on the initial shear
parameter (see table 1). The results are qualitatively consistent with earlier DNS (Lee
et al. 1990) and experiments (Harris et al. 1977; Tavoularis & Corrsin 1981; Rohr
et al. 1988; Tavoularis & Karnik 1989; DeSouza et al. 1995). Figure 5 shows the
evolution of the Reynolds number and energy spectra for the lowest shear parameter.
Once again, the growth in the Reynolds number is consistent with the earlier literature.
The initial energy spectrum is defined in § 2.2. With time, the spectrum evolves in both
directions as expected. We do not observe an inertial range in these simulations due
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i–j Π̃ij ε̃ij bij bij (2.13) S∗
0 S∗ P/ε σ (3.12) σ (DNS fit)

1–2 0.156 −0.014 −0.165 −0.166 3 10.3 1.6 0.12 0.10
1–1 −0.090 0.082 0.154 0.168
2–2 0.036 0.045 −0.137 −0.140
3–3 0.054 0.068 −0.019 −0.028
1–2 0.086 −0.004 −0.149 −0.159 15 19.6 2.8 0.19 0.20
1–1 −0.055 0.060 0.300 0.352
2–2 0.021 0.015 −0.210 −0.208
3–3 0.034 0.027 −0.092 −0.146
1–2 0.050 −0.002 −0.126 −0.139 27 26.6 3.4 0.17 0.18
1–1 −0.031 0.049 0.391 0.484
2–2 0.012 0.008 −0.255 −0.254
3–3 0.019 0.018 −0.144 −0.229

Table 1. Asymptotic values of Π̃ij , ε̃ij , bij , S∗, P/ε and σ for each of the three values of S∗
0 .

The second column of bij is computed from (2.13). The first column of σ is obtained from
(3.12) while the second column is determined by fitting the results shown in figure 4. Notice
that the asymptotic value changes as a function of the initial shear parameter, and that the
level of anisotropy of the flow decreases as the shear parameter increases.
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Figure 5. Time evolution of (a) Rλ and (b) the non-dimensional, three-dimensional energy
spectrum, at the indicated values of St for S∗

0 = 27 and (Rλ)0 = 26.

to the modest Reynolds numbers (with the relatively strict resolution requirement we
have adopted, as discussed in § 3.3).

Figure 6 shows the temporal evolution of the velocity derivative skewness M3.
The derivative skewness can be related to the turbulent energy cascade through the
Kármán–Howarth equation (Pope 2000), and is therefore considered a measure of the
degree to which the nonlinear terms have reached their equilibrium. We show results
for initially Gaussian turbulence (M3(0) = 0) subject to mean shear with S∗

0 = 3, 15
and 27, and for isotropic turbulence that initially decayed until M3 ∼ −0.4 before
being subjected to mean shear with S∗

0 = 3 and 27. Following the application of mean
shear, we observe M3 decreases to a minimum and then slowly increases with time. The
curves for the Gaussian turbulence, and for the isotropic turbulence that had decayed,
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Figure 6. Time evolution of the skewness of the velocity derivative M3 for Gaussian turbulence
(M3(0) = 0) with three initial values of the shear parameter: S∗

0 = 3 +, 15 � and 27 � and
isotropic turbulence that initially decayed until M3 ∼ −0.4 and then was subjected to mean
shear with S∗

0 = 3 � and 27 �.

approach each other by St ∼ 4, suggesting little sensitivity to the initial skewness.
The fact that M3 reaches a minimum over the period of our simulations supports
our contention that the nonlinear terms have had adequate time to equilibrate with
the flow. The result is qualitatively consistent with the experimental data compiled
by Tavoularis, Bennett & Corrsin (1978), who found −M3 decreased with increasing
Reynolds number over the range 10 � Rλ � 200; however, their analysis considered
only the Reynolds number, whereas the results in figure 6 show a clear dependence on
the shear parameter as well. We interpret the minimum and subsequent growth of M3

at longer times as an indication that classical energy transfer by the nonlinear terms
is growing weaker with increasing St . Recall that energy also is being ‘transferred’
from low to high wavenumbers due to the linear stretching associated with the mean
shear flow (Lumley 1964; Lumley & Panofsky 1964). Particularly at the higher values
of the shear parameter, this linear transfer becomes the dominant mode of energy
transfer, consistent with RDT. The results shown in figure 2 also support this view.
The evolution of P/ε and S∗ are only weakly affected by allowing the turbulence
to decay initially so that M3 approaches its equilibrium value of −0.4. Collectively,
these results suggest that the dominant mechanism for energy transfer, particularly at
larger values of S∗

0 , is due to the linear stretching by the mean shear that is captured
by RDT. This notion has been discussed by Lumley (1964) and Lumley & Panofsky
(1964) for a boundary layer. The ultimate breakdown of RDT therefore involves
other nonlinear effects that are discussed in § 4.3.

To quantitatively analyse the self-similar regime of HTSF, it is useful to consider
non-dimensional quantities that approach an asymptote at long times. We then can
study the dependence of the asymptotes on the two parameters (Reynolds number
and shear parameter). Figure 7 shows the time evolution of S∗ and P/ε from the
DNS. As you can see, both quantities approach an asymptote that depends sensitively
upon the initial value of S∗.
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in table 1.

By definition we can write

b12 =
P/ε

S∗ . (3.11)

As P/ε and S∗ approach constants at long times, (3.11) implies b12 will do the same.
Figure 8 shows the four non-zero components of the anisotropic Reynolds stress
tensor. Notice that each component approaches a constant at long times that depends
on S∗

0 . We can analyse the anisotropy of the turbulence by considering the invariants
of the anisotropy tensor bij . The first invariant (the trace) is zero by definition. The
second and third invariants are respectively: II ≡ bijbji and III ≡ bijbjkbki . If
we then define 3η̃2 = −2II and 2ξ 3 = III , we can construct the evolution of the
turbulence on the so-called ‘Lumley triangle’. Figure 9 shows the evolution of the
turbulence at the three values of the initial shear parameter. The vertices labelled
2C and 1C indicated two-component and one-component turbulence, respectively.
Initially the curves begin at (0,0), corresponding to isotropic turbulence. The curves
approach the 2C vertex at early times, but eventually come to a steady value (fixed
point) near the 1C vertex, to a degree that increases with increasing initial shear
parameter. Note that inviscid RDT predicts that the turbulence approaches the 1C
vertex in the limit St → ∞ (Pope 2000).

We further analyse the asymptotic behaviour of bij by seeking a steady state solution

to (2.13). From the DNS we compute Π̃ij and ε̃ij and solve (2.13) for bij , neglecting
the transient term on the left-hand side. A summary of all of the terms, including a
comparison of the prediction of (2.13) with the DNS asymptote taken from figure 8,
is shown in table 1. Overall there is very good agreement between the two, moreover
(2.13) captures all of the trends with S∗

0 even though the time dependent term has
been neglected. A similar result was obtained by Lee & Chung (1995), who solved
model equations for bij and found that the steady state was sensitive to S∗

0 . Note
that these results are consistent with the exponential growth in q2 and ε observed in
figure 4. This can be seen by rewriting the turbulent kinetic energy equation (2.12) as
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follows:

1

Sq2

dq2

dt
= 2b12

( ε

P
− 1

)
= σ. (3.12)

As b12 and P/ε approach constants, we expect the same for σ , implying exponential
growth of the turbulent kinetic energy at a rate that depends sensitively on S∗

0 .
While the sensitivity to the shear parameter is evident in our results, we see very

little sensitivity to the Reynolds number. Figure 10(a) shows a compilation of runs
at S∗

0 = 3 and 27 and (Rλ)0 over the range 27–40. Here the results are somewhat less
definitive because of the limited range of Reynolds number that we could sample
(with our stringent resolution requirements). However, we note that a strong Reynolds
number dependence would be inconsistent with a self-similar regime (with constant
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σ ) since the Reynolds number grows with increasing St (see figure 5a). Figure 10(b)
shows the same data in the form of a parameter: S∗ versus Rλ. The nearly horizontal
lines at the three values of S∗ are consistent with the apparent weak Reynolds number
dependence. We do point out that there might be a ‘threshold’ Reynolds number that
must be exceeded to achieve self-similarity. In DNS done at very low shear parameter
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(not shown), we observed the turbulence decays (i.e. σ < 0). It’s possible this is linked
to the relatively small initial Reynolds number in our DNS. That is, if the initial
Reynolds number is so small that the nonlinear interactions are negligible by the
time the DNS has achieved appreciable strain (say St ∼ 1), the system cannot initiate
exponential growth of the kinetic energy.

3.3. Discussion of DNS results

The conclusions drawn in § 3.2 are not completely consistent with some earlier
DNS results. For example, Yu & Girimaji (2005) found that the asymptotes for the
turbulence statistics in their flow were insensitive to the initial shear parameter. Shih
et al. (2000) concluded there are three regimes: (i) at low Reynolds numbers, HTSF
is sensitive to the shear parameter and the Reynolds number; (ii) at intermediate
Reynolds numbers, HTSF is sensitive to the Reynolds number and is independent of
the shear parameter and (iii) at very high Reynolds numbers, HTSF is independent
of both the shear parameter and the Reynolds number. Jacobitz et al. (1997) found
that the large-scale turbulence statistics are independent of Reynolds number for the
higher Reynolds numbers in their study, but they identified three regimes for the
shear parameter: (i) at low S∗

0 the turbulence decays (i.e. σ < 0); (ii) at moderate S∗
0

the turbulence grows exponentially; and (iii) for S∗
0 > 6 the turbulence decays. Similar

results were reported by Jacobitz & Sarkar (1999).
The origin of these discrepancies is not clear. However, we have discovered that

an important consideration with all HTSF simulations is numerical resolution. The
difficulty arises from the fact that the integral length scale L11 increases and the
Kolmogorov length η ≡ (ν3/ε)1/4 decreases in time (see figure 5). Hence, DNS can
only observe a finite window of time (currently St � 10) before loss of resolution at
the large and/or small scales causes the simulation to fail. Ideally DNS should fail
at the large and small scales simultaneously, as this maximizes the temporal window
of the simulation. We have chosen the peak wavenumber κ0 and the fluid viscosity ν

to control the initial value of the longitudinal length scale and the Kolmogorov scale
respectively (see (2.5)) so that the near ideal simulation is achieved. At the large scale,
we monitor L11/L, where L = 2π is the box size, to make sure the large scales are
well resolved. We initially considered the large scales well resolved when L11/L � 0.1.
However, we also track the slope dL11/dt , which we expect to be positive, based
on the arguments presented earlier. At the small scale we track kmaxη, where kmax

is the maximum resolved wavenumber, as a measure of the resolution of the small
scales. The DNS is considered resolved when kmaxη � 1. Figure 11 demonstrates the
importance of maintaining resolution of the small scales. Notice that at the moment
that the condition is violated the asymptotic value of S∗ is lost. We attribute the
deviation from the asymptote to loss of resolution of the large and/or small scales.
This may explain at least some of the discrepancies in the literature. For example,
the study by Shih et al. (2000) that found no dependence on the shear parameter
was done at much lower resolution (grid size of 1283) and yet had higher Reynolds
numbers than the present study.

A second complication with some of the numerical studies is the use of flows
that are not precisely HTSF. For example, the simulation of Schumacher (2004) that
imposes a linear body force produces a flow that is similar to, but not precisely the
same as HTSF. This is especially true for the large scales, that in their flow achieve
a steady state with P/ε = 1, while we observe indefinite growth, corresponding to
P/ε > 1. The simulation of Yu & Girimaji (2005) too is not strictly HTSF. They
studied Couette flow and restricted their attention to the centre of the channel where
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Reference b12 S∗ St

Tavoularis & Karnik (1989) −0.16 8.6 10–28
Tavoularis & Corrsin (1981) −0.14 12.5 8–12
DeSouza et al. (1995) −0.11 21.8 11–16

Table 2. Asymptotic values of b12 and S∗ for the indicated homogeneous shear flow
experiments. Notice that the asymptotic value changes as a function of the shear parameter,
and that the anisotropy of the flow decreases as the asymptotic value of the shear parameter
increases. The fourth column (St) indicates the duration of time the asymptotic level was
observed.
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the turbulence is nearly homogeneous. Nevertheless, there are aspects of this flow that
will systematically deviate from HTSF, particularly when considering the long-time
asymptote, as Couette flow will eventually approach a steady state. In our opinion,
it is not straightforward to know when these slight deviations from true HTSF will
begin to affect the dynamics of the large scales.

Given the conflicts in the DNS literature, we seek further evidence from experiments
to support our findings. The work of Tavoularis (Tavoularis & Corrsin 1981;
Tavoularis & Karnik 1989; DeSouza et al. 1995) spans the broadest range of the
shear parameter. The asymptotic values reported in these studies show a systematic
dependence of the long-time asymptotes of b12 on the shear parameter. Table 2 shows
a compilation of their results, along with the range of St that was observed in their
wind tunnel. The asymptotes are in quantitative agreement with the values found
from DNS (see table 1), supporting our conclusion about the importance of S∗

0 , and
implicitly confirming the conclusion about the insensitivity to the Reynolds number,
which varies strongly along the length of the wind tunnel.
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4. Rapid distortion theory
As suggested by Townsend (1976), Hunt & Carruthers (1990), Lee et al. (1990),

Rogers (1991) and others, when the mean deformation rate is large compared to the
turbulence time scales (i.e. S∗ � 1), (2.3) can be linearized by neglecting turbulence–
turbulence interactions. Solutions to the linearized equations are often referred to as
RDT. The most commonly used form of the theory is based on the Euler equations,
where the viscous terms also have been neglected. We shall refer to this as inviscid
RDT or ‘iRDT’. The justification often made for neglecting the viscous terms is that,
in the absence of the nonlinear terms that are responsible for the energy cascade,
the viscous terms are expected to be negligible. The resulting solution of the iRDT
equations for the velocity (and all related turbulence statistics) depends solely on the
total strain β ≡ St , and is independent of the shear rate (so long as it is large enough
to justify the RDT assumptions).

Our objective here is to understand the relevance of the initial Reynolds number
and shear parameter, both of which depend upon the energy dissipation rate. iRDT
cannot be used to consider this question. Instead, we analyse the RDT approximation
to the full Navier–Stokes equation that includes the viscous terms (referred to hereafter
as ‘vRDT’). As the viscous terms are linear, the resulting solution remains analytic,
and is only slightly more complex than iRDT.

4.1. Basic formulation

The vRDT equations can be solved in Fourier space yielding (Moffat 1967; Townsend
1970; Maxey 1982; Rogers 1991)

û′(k, t) = exp (−Γ ) A · û′(k0, 0), (4.1)

where û′(k, t) is the Fourier transform of the fluctuating velocity at time t, given the
initial velocity û′(k0, 0). Note that the mean shear causes the wavevector k to be a
function of time. If we define the initial wavevector as k0 ≡ (k1, k2, k3), the wavevector
at time t is given by k ≡ (k1, k2 − k1St, k3). Γ and the transformation matrix A are
defined as

Γ = νt

[
k2

0 − k1k2St +
(k1St)2

3

]
, (4.2)

A(k, t) =

⎡
⎢⎢⎢⎢⎣

1
k2
0

(k2
1+k2

3)

(
− k2

3

k2
0
P +

k2
1

k2
0
Q

)
0

0
k2
0

k2 0

0 k1k3

(k2
1+k2

3)
(P + Q) 1

⎤
⎥⎥⎥⎥⎦ , (4.3)

where k2
0 ≡ k0 · k0, k2 ≡ k · k and the functions P and Q are given by

P =
k2

0

k1

√
k2

1 + k2
3

(arctan α − arctan τ ) , (4.4)

Q =
St

(
k2

0 − 2k2
2 + k1k2St

)
k2

. (4.5)

The angles α and τ are

α =
k2√

k2
1 + k2

3

, τ =
k2 − k1St√

k2
1 + k2

3

. (4.6)
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The above expressions allow us to evolve forward an arbitrary initial spectral
velocity, û′(k0, 0). The initial velocity is assumed to be isotropic and Gaussian, with
a three-dimensional velocity spectrum defined as

Φ0
ij (k0, 0) =

E0 (k0)

4πk2
0

(
δij − kikj

k2
0

)
, (4.7)

where E0(k0) is the initial energy spectrum. The three-dimensional spectrum at time
t is then obtained from the following mapping

Φij (k, t) = e(−2Γ )AipAjqΦ
0
pq(k0, 0). (4.8)

Arbitrary single-point statistics are determined from integrals of the spectrum, for
example,

Rij (t) =

∫∫∫
DνAipAjqΦ

0
ij (k0, 0) dk, (4.9)

ε(t) = 2ν

∫∫∫
k2DνAipAiqΦ

0
ij (k0, 0) dk, (4.10)

Π r
ij =

pr

ρ

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)

= −2S

∫∫∫ [
kik1

k2
Φj2 (k, t) +

kjk1

k2
Φi2 (k, t)

]
dk, (4.11)

where pr is the solution to (2.4) based on the ‘rapid’ term only and Dν ≡ exp(−2Γ ).
These relationships will be used to predict the evolution of various large-scale, single-
point quantities that will be compared to the DNS results.

4.2. Viscous RDT at short times

The initial development of the turbulence can be analysed analytically by performing
an asymptotic expansion of the vRDT solution (4.9) and (4.10) in the limit β ≡ St → 0.
We begin by defining the nth moment of the initial energy spectrum as

In

2
= νn

∫ ∞

0

k2nE0 (k0) dk0. (4.12)

The initial turbulent kinetic energy and dissipation rate are then q2
0 = I0 and ε0 = I1

respectively. Using (4.9) and (4.10), we obtain the following evolution equations for
the kinetic energy and dissipation rate

q2
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where Mn ≡ In/(q
2
0S

n) and Nn ≡ In/(ε0S
n−1). The equations for P/ε and S∗ are
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The expansions reveal an explicit dependence of all turbulence statistics on S∗
0 and

an implicit dependence on the shape of the initial energy spectrum (and hence Rλ)
through the integrals In. Figure 12 shows a comparison between the DNS and vRDT
solutions for P/ε. The expansion captures the early time development well (St � 2),
particularly at the higher value initial shear parameter, which is consistent with the
underlying assumptions of the theory.

We also can derive analytical expressions for the anisotropic Reynolds stress tensor
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Notice that setting Mn = 0 and S∗
0 = ∞ the above equations reduce to the inviscid

expansions derived by Rogers (1991).

4.3. Viscous RDT at long times

It is not possible to derive an analytical solution to the vRDT equations that is valid
for all time. Instead we must numerically evaluate the integrals shown in (4.9)–(4.11).
The integrals are most easily computed in spherical coordinates, with the axis oriented
such that k1 = k cos θ , k2 = k sin θ sinφ, k3 = k sin θ cos φ and dk = k2 sin θdkdθdφ.
To improve the accuracy of the numerical integration, it is convenient to replace the
initial energy spectrum with an exponential function of the following form

E0(k0) = c1k
2
0 exp

(
−c2k

2
0

)
, (4.16)

where c1 and c2 are adjustable parameters. Using this form of the spectrum, it is
possible to analytically evaluate the semi-infinite integrals over the wavenumber k

(Thacker et al. 1999). Numerical integration is then only required over the angles θ

and φ. The numerical integrals were performed using a two-dimensional Simpson’s
rule (Press et al. 1999). The angular grid was refined until convergence was achieved.
To test the accuracy of our numerical scheme, we show in figure 13 a comparison
between the asymptote for R22(β)/q2

0 and R12(β)/q2
0 in the limit β → ∞ for the



234 J. C. Isaza and L. R. Collins

0.5

0.4

0.3

0.2

0.1

0 30252015105

(a) (b)

R
2
2
/q

2 0

R
1
2
/q

2 0

St St

–1.0

–0.8

–0.6

–0.4

–0.2

0.0

302520151050

Figure 13. Test of the numerical scheme for evaluating the integrals at long times.
(a) Comparison of numerical evaluation of inviscid RDT equations (markers) for R22 with the
asymptotic prediction (lines) ln(4β)/(4β) of Rogers (1991). (b) Comparison of R12 with the
asymptotic prediction of − ln(2) also by Rogers (1991).
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Figure 14. Time evolution S∗ and P/ε from vRDT for an initial value of S∗
0 = 27 and Rλ ∼

26. Notice that P/ε goes below one showing that the turbulence will decay at long times.

inviscid case (i.e. ν = 0) that was derived by Rogers (1991) with the numerical results
(symbols). The good agreement confirms the numerical procedure.

Figure 14 shows the evolution of S∗ and P/ε predicted by vRDT for 0 � St � 80.
We see that vRDT predicts indefinite growth of S∗, but that P/ε < 1 at long times
and hence the eventual decay of the turbulence (i.e. σ < 0 for β → ∞). It also
predicts b12 → 0 at long times (see figure 15) making the production term in the
turbulent kinetic energy balance equation approach zero. These long-time predictions
are inconsistent with most DNS and virtually all of the experiments. Interestingly,
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the predicted growth of S∗ with time superficially strengthens the assumptions of the
theory, making the cause for its breakdown at long times unclear.

Clues to the cause of the failure of the theory can be found by considering the
balance equation for R22 (2.7b). The only source for this component of the Reynolds
stress is due to the pressure–strain term Π22. Recalling that only the ‘rapid’ terms are
retained in vRDT (see (4.11)) we can write

Π r
22 = −2S

∫∫∫
exp

[
−2

βν

S

(
k2

0 − βk1k2 +
β2k2

1

3

)]
×

E0 (k0)
(k2 − βk1) k1

(
k2

1 + k2
3

)
4π

(
k2

0 + β2k2
1 − 2βk1k2

)3
dk. (4.17)

The integrand of (4.17) goes to zero as β → ∞ due to the unbounded (negative) growth
of the exponent and the term in the denominator: k2

0 + β2k2
1 − 2βk1k2. Consequently,

vRDT predicts R22 → 0 at long times. Figure 16 shows that the rapid term is initially
negative (a sink) and approaches zero at long times. The resulting two-dimensional
turbulence has no sources for any of the components of the Reynolds stress, and so
they all eventually decay (figure 15). We define the ‘slow’ pressure–strain correlation
as

Π s
ij ≡ ps

ρ

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
, (4.18)

where ps refers to the solution of the Poisson equation for the pressure (2.4) based
solely on the slow term on the right-hand side. In figure 16, we see that the rapid and
slow contributions to the same component of the pressure–strain correlation behave
differently. The nonlinear slow term acts as a source of R22 that eventually causes the
rapid term to change sign and become a source as well. Thus, the slow pressure–strain
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0 = 27 and Rλ ∼ 26.

term Πs
22 is essential for sustaining the three-dimensionality of the turbulence that

enables the source terms to exceed the sinks and the turbulence to grow indefinitely
(Deissler 1970). These results suggest a simple fix of vRDT at long times may be
the introduction of a nonlinear model for Π s

22, such as the pressure–strain model of
Rotta (1951).

5. Conclusions
In this study, we investigated the asymptotic behaviour of HTSF using a

combination of DNS and viscous RDT. The DNS was performed using a code that
allows the shear rate to be varied over a wide range (Brucker et al. 2007). Over the
window of time that the simulations retain good resolution of large and small scales,
DNS predicts the large scales approach a self-similar state that is sensitive to the initial
value of the shear parameter S∗

0 , and insensitive to the initial Reynolds number. The
results are consistent with the body of work by Tavoularis and coworkers that showed
a similar dependence of the self-similar regime on the shear parameter, and (implicitly)
no sensitivity to the Reynolds number that was growing along the length of the wind
tunnel. There remain inconsistencies with earlier DNS studies that we cannot fully
explain. We demonstrated the importance of grid resolution and note that some of
these studies may have suffered from insufficient grid resolution (based on the size of
the grid and the value of the Reynolds number in the simulation). Unfortunately, all
DNS studies have this potential effect coming into play. To minimize this possibility,
we implemented stringent resolution requirements that ultimately limited the range of
Reynolds numbers that could be achieved (26 � Rλ � 63). The relative insensitivity
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to Reynolds number gives us confidence that these results are general and not an
artifact of the moderate Reynolds numbers in the study.

Following earlier investigations, we analysed the short and long-term behaviour of
shear flow using RDT. The analytical solution to vRDT for short times is in excellent
agreement with the DNS at high values of the shear parameter. The results show
how S∗

0 and Rλ enter into the solution. Analysing this result helps explain the strong
sensitivity of the large-scale turbulence statistics to the shear parameter and the weak
sensitivity to the Reynolds number (the dependence on Rλ enters implicitly through
its effect on the spectral moments In). Numerical evaluation of the vRDT integrals
for long times, however, yields results that are completely inconsistent with the DNS
and experiments. In particular, the turbulent kinetic energy and viscous dissipation
rate are found to decay to zero at long times. The cause has been traced to the
pressure–strain terms for the velocity component in the shear direction. The rapid
component initially acts as a sink term, as does viscous dissipation. In the absence
of the ‘slow’ component arising from the nonlinear convective terms, vRDT predicts
this component of the Reynolds stress decays to zero. The other components of the
Reynolds stress then have no source term and so they all decay. In the DNS, the ‘slow’
pressure–strain term counteracts this tendency, eventually causing the rapid term to
change sign. The two pressure–strain terms, acting together as sources, maintain the
three-dimensionality of the turbulence, thereby allowing for the indefinite growth of
all components of the Reynolds stress tensor. This suggests a simple fix of the theory,
namely, to include a model for the nonlinear pressure–strain term acting in the shear
direction.

The high degree of sensitivity of the outcome of HTSF to small changes in the
relative size of the components of the Reynolds stress may explain why the long-time
asymptotic behaviour remains so controversial.

The authors thank Z. Warhaft and K. A. Brucker for their valuable input. This
work was supported by the National Science Foundation under grants PHY-0554675
and CBET-0756510. Juan C. Isaza was partially supported by a fellowship from the
Fulbright Commission.

Note added in proof: Recently we have conducted experimental measurements of
HTSF in a wind tunnel that extend the range of the Reynolds number (100 <

(Rλ)0 < 250) and the maximum time (0 < St < 20). The results are consistent with
the findings reported here, i.e., the asymptotic state of the large-scale turbulence
statistics is a strong function of the initial value of the shear parameter, but not of
the initial value of the Reynolds number. Details can be found in Isaza, Warhatt &
Collins (2009).
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